Probability and Random Processes ECS 315

Asst. Prof. Dr. Prapun Suksompong prapun@siit.tu.ac.th Summary

Office Hours:

BKD, 6th floor of Sirindhralai buildingWednesday14:00-15:30Friday14:00-15:30

1

Chapter 7

- RV = Random Variable
 - Use capital letters.
- Defining event from a statement about a RV: $[X > 7] \equiv \{\omega: X(\omega) > 7\}$
- Probability of an event involving a RV $P[X > 7] \equiv P([X > 7]) \equiv P(\{\omega: X(\omega) > 7\})$
- In general, the **support** of a RV X is any set S such that $P[X \in S] = 1$.
- A RV is discrete iff it has a countable support.

Sections 8.1-8.2

- (Default) support for discrete RV: $S_X = \{x: p_X(x) > 0\}$
- Probability Mass Function (pmf): $p_X(x) \equiv P[X = x]$
 - Useful only for discrete RVs.
 - Defined for all $x \in \mathbb{R}$
 - "0, otherwise" in its description.
 - Distribution
 - Two characterizing properties:
 - $p_X(x) \ge 0$

•
$$\sum_{x} p_X(x) = 1$$

 $p_X(x)$

• Stem plot

1/2

1/4

1/8

• Cumulative Distribution Function (cdf)

$$F_X(x) \equiv P[X \le x]$$

- Useful for any kind of RVs.
- Defined for all $x \in \mathbb{R}$
- Three characterizing properties:
 - 1. Non-decreasing
 - 2. Right-continuous

$$\lim_{x \to -\infty} F_X(x) = 0 \text{ and } \lim_{x \to \infty} F_X(x) = 1.$$

• For discrete RV: Staircase function with jumps whose size at x = c gives P[X = c].

Section 8.3

$X \sim$	Support S_X	$p_X(x) =$
Uniform $\mathcal{U}(S)$	S	$\begin{cases} \frac{1}{ S }, & x \in S, \\ 0, & \text{otherwise.} \end{cases}$
Bernoulli (p) n = 1	$\{0, 1\}$	$\begin{cases} 1-p, x=0, \\ p, x=1, \\ 0, \text{otherwise.} \end{cases}$
Binomial $\mathcal{B}(n,p)$	$\{0, 1, \ldots, n\}$	$\begin{cases} \binom{n}{x} p^x (1-p)^{n-x}, & x = 0, 1, 2, \dots, n, \\ 0, & \text{otherwise.} \end{cases}$
Geometric $\mathcal{G}_0(p)$	$\mathbb{N} \cup \{0\}$	$\begin{cases} p(1-p)^x, & x = 0, 1, 2, \dots, \\ 0, & \text{otherwise.} \end{cases}$
Geometric $\mathcal{G}_1(p)$	\mathbb{N}	$\begin{cases} p(1-p)^{x-1}, & x = 1, 2, \dots, \\ 0, & \text{otherwise.} \end{cases}$
Poisson $\mathcal{P}(\alpha)$	$\mathbb{N} \cup \{0\}$	$\begin{cases} e^{-\alpha} \frac{\alpha^x}{x!}, & x = 0, 1, 2, \dots, \\ 0, & \text{otherwise} \end{cases}$

Ch. 9: Expectation and Variance

• The **expectation** (or **mean** or **expected value**) of a discrete random variable *X* is given by

$$\mathbb{E}X = \sum x p_X(x)$$

• The expected value of a function g of a RV X is given by

$$\mathbb{E}\left[g(X)\right] = \sum_{x} g(x) p_{X}(x)$$

• The **variance** of a RV X is given by

$$\operatorname{Var}[X] = \mathbb{E}\left[\left(X - \mathbb{E}X\right)^2\right] = \mathbb{E}\left[X^2\right] - \left(\mathbb{E}X\right)^2$$

• The **standard deviation** of a RV *X* is given by

$$\sigma_{X} = \sqrt{\operatorname{Var}[X]}$$